Skip to main content

Privacy-Preserving Utility Verification of the Data Published


ABSTRACT

In the problem of privacy-preserving collaborative data publishing (PPCDP), a central data publisher is responsible for aggregating sensitive data from multiple parties and then anonymizing it before publishing for data mining. In such scenarios, the data users may have a strong demand to measure the utility of the published data since most anonymization techniques have side effects on data utility. Nevertheless, this task is non-trivial because the utility measuring usually requires the aggregated raw data, which is not revealed to the data users due to privacy concerns. What’s worse, the data publishers may even cheat in the raw data since no one including the individual providers knows the full dataset.
In this paper, we first propose a privacy-preserving utility verification mechanism based upon cryptographic technique for DiffPart – a differentially private scheme designed for set-valued data. This proposal can measure the data utility based upon the encrypted frequencies of the aggregated raw data instead of the plain values, which thus prevents privacy breach. Moreover, it is enabled to privately check the correctness of the encrypted frequencies provided by the publisher, which helps detect dishonest publishers. We also extend this mechanism to DiffGen – another differentially private publishing scheme designed for relational data. Our theoretical and experimental evaluations demonstrate the security and efficiency of the proposed mechanism.


Existing Definition

Ø A lot of privacy models and corresponding anonymization mechanisms have been proposed in the literature such as k-anonymity and differential privacy.
Ø k-anonymity and its variants (e.g. l-diversity and t-closeness protect privacy by generalizing the records such that they cannot be distinguished from some other records. Differential privacy is a much more rigorous privacy model. It requires that the released data is insensitive to the addition or removal of a single record.

Proposed Solution:
v We first propose a privacy-preserving utility verification mechanism for DiffPart, a differentially private anonymization algorithm designed for set-valued data.
v DiffPart perturbs the frequencies of the records based on a context-free taxonomy tree and no items in the original data are generalized.
v Our proposal solves the challenge to verify the utility of the published data based on the encrypted frequencies of the original data records instead of their plain values. As a result, it can protect the original data from the verifying parties (i.e., the data users) because they cannot learn whether or how many times a specific record appears in the raw dataset without knowing its real frequency. In addition, since the encrypted frequencies are provided by the publisher, we also present a scheme for the verifying parties to incrementally verify its correctness.
v We then extend the above mechanism to DiffGen, a differentially private anonymization algorithm designed for relational data. Different from DiffPart, DiffGen may generalize the attribute values before perturbing the frequency of each record. Information losses are caused by both the generalization and the perturbation. These two kinds of information losses are measured separately by distinct utility metrics.We take both into consideration.
v Our analysis shows that the utility verification for generalization operations can be carried out with only the published data. As a result, this verification does not need any protection. The utility metric for the perturbation is similar with that for DiffPart.We thus adapt the proposed privacy-preserving mechanism to this verification.
          We conduct a series of experiments upon the real world set-valued data and relational data to evaluate the efficiency of the proposed mechanisms. The results show that these mechanisms are efficient enough provided that both the data publishing and utility verification are offline.
System Modules:
Ø USER
Ø Register
Ø Login
Ø Generate OTP
Ø Ftp Cloud
Ø File upload/ Download





MODULES:     
Ø USER:
Ø Register:
           User enters this system and register with own details.
Ø Login:
           User can login this system after they can view home page.
Ø Generate OTP
           User can login this system before they are getting  OTP for continue login through e-mail.
Ø FTP Cloud:
           User can login this system after they can view home page of cloud system.
Ø File Upload/Download
           User can enter this system after they can  File upload/ download to this system.





Use case Diagrams:      




Sequence Diagram:
Collaboration Diagram:

collaborate.PNG

project-center-trichy-thanjavur-kumbakonam
project-center-salem-erode-namakal-tiruchengode-karur-gandhipuram
project-center-mannargudi-pattukkottai
project-center-ambattur-avadi-ashokpillar-adyar-ekkaduthangal
project-center-bangalore-chennai-trivandrum
project-center-bhubaneswar-belgum-bhopal
project-center-chidambaram-mayiladuthurai-nagapattinam-cuddalore
project-center-coimbatore-chennai-salem-madurai-erode-trichy-tirunelveli-pondicherry
project-center-delhi-mumbai-hyderabad-visakhapatnam
project-center-dharmapuri-hosur-krishnagiri
project-center-dindigul-palani-rasipuram
project-center-tirunelveli-tiruchendur-nagercoil-virudhunagar-rajapalayam
project-center-tnagar-tambaram-nungambakkam-velachery
project-center-trivandrum-ernakulam
project-center-in-chennai

Comments

Popular posts from this blog

karthividhyalaya school in kumbakonam

International School in Kumbakonam

Project Center in Trichy

Project Center in Thanjavur, Do IEEE Projects,  learn VMware, learn Android, learn embedded system, Arudhra innovations, project center in Kumbakonam, create your own app, play with your app as per your like, project center in trichy, Learn Hadoop,  Learn Cloud Server, Learn Virtualization, how to burn the program to ic , how the interface devices, how to create an android app, what kind of app we will do, Arudhra innovations, project center in Kumbakonam, learn big data, learn .Net , Do your academic project as your own, project center in trichy, embedded system projects ,vlsi projects ,java projects, android projects, Arudhra innovations, Learn Embedded system, project center in Kumbakonam, publish your own ieee papers Arudhra innovations ,2012 we published 4 IEEE papers, Project center in Kumbakonam,2013 we published 20 IEEE papers, we are planned to publish 100 papers in 2014-2015 academic year, Project Center in Kumbakonam, Project Center in Thanjavur, Project center...

Web site life cycle plan

Web site life cycle plan   A plan should be prepared for managing appropriate life cycle processes for the Web site—acquisition, sup- ply, development, operation, and maintenance. The plan for the Web site should define when, how, and by whom specific activities are to be performed, including options and alternatives, as appropriate. The plan should include, at least, the following generic items: a) Date of issue and status b) Scope c) Issuing organization d) References e) Approval authority f) Planned activities and tasks g) Macro references (policies or laws that give rise to the need for this plan) h) Micro references (other plans or task descriptions that elaborate details of this plan) i) Schedules j) Estimates k) Resources and their allocation l) Responsibilities and authority m) Risks n) Quality control measures o) Cost p) Interfaces among parties involved q) Environment/infrastructure (including safety needs) r) Training s) Glossary t...